The Distinguishing Chromatic Number
نویسندگان
چکیده
In this paper we define and study the distinguishing chromatic number, χD(G), of a graph G, building on the work of Albertson and Collins who studied the distinguishing number. We find χD(G) for various families of graphs and characterize those graphs with χD(G) = |V (G)|, and those trees with the maximum chromatic distingushing number for trees. We prove analogs of Brooks’ Theorem for both the distinguishing number and the distinguishing chromatic number, and for both trees and connected graphs. We conclude with some conjectures.
منابع مشابه
The distinguishing chromatic number of bipartite graphs of girth at least six
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
متن کاملDistinguishing Chromatic Number of Cartesian Products of Graphs
The distinguishing chromatic number χD (G) of a graph G is the least integer k such that there is a proper k-coloring of G which is not preserved by any nontrivial automorphism of G. We study the distinguishing chromatic number of Cartesian products of graphs by focusing on how much it can exceed the trivial lower bound of the chromatic number χ(·). Our main result is that for every graph G, th...
متن کاملOn computing the distinguishing and distinguishing chromatic numbers of interval graphs and other results
A vertex k-coloring of graph G is distinguishing if the only automorphism of G that preserves the colors is the identity map. It is proper-distinguishing if the coloring is both proper and distinguishing. The distinguishing number of G, D(G), is the smallest integer k so that G has a distinguishing k-coloring; the distinguishing chromatic number of G, χD(G), is defined similarly. It has been sh...
متن کاملThe distinguishing chromatic number of Cartesian products of two complete graphs
A labeling of a graph G is distinguishing if it is only preserved by the trivial automorphism of G. The distinguishing chromatic number of G is the smallest integer k such that G has a distinguishing labeling that is at the same time a proper vertex coloring. The distinguishing chromatic number of the Cartesian product Kk Kn is determined for all k and n. In most of the cases it is equal to the...
متن کاملOn Distinguishing and Distinguishing Chromatic Numbers of Hypercubes
The distinguishing number D(G) of a graph G is the least integer d such that G has a labeling with d colors that is not preserved by any nontrivial automorphism. The restriction to proper labelings leads to the definition of the distinguishing chromatic number χD(G) of G. Extending these concepts to infinite graphs we prove that D(Qא0) = 2 and χD(Qא0) = 3, where Qא0 denotes the hypercube of cou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 13 شماره
صفحات -
تاریخ انتشار 2006